286,454 research outputs found

    The velocities of intranetwork and network magnetic fields

    Get PDF
    We analyzed two sequences of quiet-Sun magnetograms obtained on June 4, 1992 and July 28, 1994. Both were observed during excellent seeing conditions such that the weak intranetwork (IN) fields are observed clearly during the entire periods. Using the local correlation tracking technique, we derived the horizontal velocity fields of IN and network magnetic fields. They consist of two components: (1) radial divergence flows which move IN fields from the network interior to the boundaries, and (2) lateral flows which move along the network boundaries and converge toward stronger magnetic elements. Furthermore, we constructed divergence maps based on horizonal velocities, which are a good representation of the vertical velocities of supergranules. For the June 4, 1992 data, the enhanced network area in the field of view has twice the flux density, 10% higher supergranular velocity and 20% larger cell sizes than the quiet, unenhanced network area. Based on the number densities and flow velocities of IN fields derived in this paper and a previous paper (Wang et al., 1995), we estimate that the lower limit of total energy released from the recycling of IN fields is 1.2 × 10²⁸ erg s⁻¹, which is comparable to the energy required for coronal heating

    On the convergence of autonomous agent communities

    Get PDF
    This is the post-print version of the final published paper that is available from the link below. Copyright @ 2010 IOS Press and the authors.Community is a common phenomenon in natural ecosystems, human societies as well as artificial multi-agent systems such as those in web and Internet based applications. In many self-organizing systems, communities are formed evolutionarily in a decentralized way through agents' autonomous behavior. This paper systematically investigates the properties of a variety of the self-organizing agent community systems by a formal qualitative approach and a quantitative experimental approach. The qualitative formal study by applying formal specification in SLABS and Scenario Calculus has proven that mature and optimal communities always form and become stable when agents behave based on the collective knowledge of the communities, whereas community formation does not always reach maturity and optimality if agents behave solely based on individual knowledge, and the communities are not always stable even if such a formation is achieved. The quantitative experimental study by simulation has shown that the convergence time of agent communities depends on several parameters of the system in certain complicated patterns, including the number of agents, the number of community organizers, the number of knowledge categories, and the size of the knowledge in each category

    Measuring the cosmic proper distance from fast radio bursts

    Full text link
    The cosmic proper distance dPd_P is a fundamental distance in the Universe. Unlike the luminosity and angular diameter distances, which correspond to the angular size, the proper distance is the length of light path from the source to observer. However, the proper distance has not been measured before. The recent redshift measurement of a repeat fast radio burst (FRB) can shed light on the proper distance. We show that the proper distance-redshift relation can indeed be derived from dispersion measures (DMs) of FRBs with measured redshifts. From Monte Carlo simulations, we find that about 500 FRBs with DM and redshift measurements can tightly constrain the proper distance-redshift relation. We also show that the curvature of our Universe can be constrained with a model-independent method using this derived proper distance-redshift relation and the observed angular diameter distances. Owing to the high event rate of FRBs, hundreds of FRBs can be discovered in the future by upcoming instruments. The proper distance will play an important role in investigating the accelerating expansion and the geometry of the Universe.Comment: 9 pages, 4 figures, proof versio

    Genetic algorithms with immigrants and memory schemes for dynamic shortest path routing problems in mobile ad hoc networks

    Get PDF
    This article is posted here with permission of IEEE - Copyright @ 2010 IEEEIn recent years, the static shortest path (SP) problem has been well addressed using intelligent optimization techniques, e.g., artificial neural networks, genetic algorithms (GAs), particle swarm optimization, etc. However, with the advancement in wireless communications, more and more mobile wireless networks appear, e.g., mobile networks [mobile ad hoc networks (MANETs)], wireless sensor networks, etc. One of the most important characteristics in mobile wireless networks is the topology dynamics, i.e., the network topology changes over time due to energy conservation or node mobility. Therefore, the SP routing problem in MANETs turns out to be a dynamic optimization problem. In this paper, we propose to use GAs with immigrants and memory schemes to solve the dynamic SP routing problem in MANETs. We consider MANETs as target systems because they represent new-generation wireless networks. The experimental results show that these immigrants and memory-based GAs can quickly adapt to environmental changes (i.e., the network topology changes) and produce high-quality solutions after each change.This work was supported by the Engineering and Physical Sciences Research Council of U.K. underGrant EP/E060722/

    Electroencephalogram evidence for the activation of human mirror neuron system during the observation of intransitive shadow and line drawing actions

    Get PDF
    This article is available open access from the NCBI website at the link below. Copyright 2013 © Neural Regeneration Research. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Previous studies have demonstrated that hand shadows may activate the motor cortex associated with the mirror neuron system in human brain. However, there is no evidence of activity of the human mirror neuron system during the observation of intransitive movements by shadows and line drawings of hands. This study examined the suppression of electroencephalography mu waves (8–13 Hz) induced by observation of stimuli in 18 healthy students. Three stimuli were used: real hand actions, hand shadow actions and actions made by line drawings of hands. The results showed significant desynchronization of the mu rhythm (“mu suppression”) across the sensorimotor cortex (recorded at C3, Cz and C4), the frontal cortex (recorded at F3, Fz and F4) and the central and right posterior parietal cortex (recorded at Pz and P4) under all three conditions. Our experimental findings suggest that the observation of “impoverished hand actions”, such as intransitive movements of shadows and line drawings of hands, is able to activate widespread cortical areas related to the putative human mirror neuron system.The National Natural Science Foundation of China and the Research Fund for the Doctoral Program of Higher Education of China
    corecore